Chem 131C. Lec. 15. Thermodynamics and Chemical Dynamics. Getting to Know the Gibbs Energy (English)


Share on Facebook Share on Twitter

UCI Chem 131C Thermodynamics and Chemical Dynamics (Spring 2012)
Lec 15. Thermodynamics and Chemical Dynamics -- Getting to Know The Gibbs Energy --
View the complete course: http://ocw.uci.edu/courses/chem_131c_thermodynamics_and_chemical_dynamics.html
Instructor: Reginald Penner, Ph.D.

License: Creative Commons BY-NC-SA
Terms of Use: http://ocw.uci.edu/info.
More courses at http://ocw.uci.edu

Description: In Chemistry 131C, students will study how to calculate macroscopic chemical properties of systems. This course will build on the microscopic understanding (Chemical Physics) to reinforce and expand your understanding of the basic thermo-chemistry concepts from General Chemistry (Physical Chemistry.) We then go on to study how chemical reaction rates are measured and calculated from molecular properties. Topics covered include: Energy, entropy, and the thermodynamic potentials; Chemical equilibrium; and Chemical kinetics. This video is part of a 27-lecture undergraduate-level course titled "Thermodynamics and Chemical Dynamics" taught at UC Irvine by Professor Reginald M. Penner.

Thermodynamics and Chemical Dynamics (Chem 131C) is part of OpenChem: http://ocw.uci.edu/openchem/

Recorded on May 7, 2012.


Index of Topics:
00:06 - Introduction: Getting to know the Gibbs Energy
00:51 - Announcements:
01:54 - UC Irvine wins NCAA men's volleyball title...
02:19 - Today's tasks
02:42 - Diagram: The system and the surroundings: Three flavors...
04:22 - Formula (spontaneous process: nonisolated system)
04:43 - q is a conserved quantity...
06:09 - Chart: in Friday's lecture...
07:20 - in chemistry, T is frequently constant...
07:55 - let's consider...
09:57 - to achieve the const. volume condition...
11:16 - for any process occurring at const. volume and temperature...
11:50 - In chemistry, it is even more useful to be able to make predictions...
14:17 - for any process occurring at const. pressure...
14:37 - today (and, ahem, last Friday)
14:54 - Chart
15:56 - Graph ("reaction coordinate...")
19:10 - Among these four thermodynamic "potentials"...
20:37 - How does G depend on temperature?
21:00 - conclusions:
21:20 - plot (Gibbs energy and temperature)
22:04 - now, if we substitute from this equation for S...
22:31 - substitute and solve for the derivative
23:30 - now, to go further, note the chain rule that tells us that:
24:40 - (cont) this bad boy is called the Gibbs-Helmholtz Eq.
25:56 - Ok, now how does G depend on pressure...
27:35 - conclusion: Gibbs energies of solids and liquids...
28:18 - Gibbs energies of gases depend strongly on P.
29:20 - Diagram, Formula
30:19 - We define a standard molar Gibbs...
31:08 - Graph, Formula
32:54 - exercise 15, 29b: The change in the Gibbs energy of 25 g...
39:20 - exercise 15.24b: Calculate the standard Gibbs free energy change...


Required attribution: Penner, Reginald Thermodynamics and Chemical Dynamics 131C (UCI OpenCourseWare: University of California, Irvine),  http://ocw.uci.edu/courses/chem_131c_thermodynamics_and_chemical_dynamics.html. [Access date]. License: Creative Commons Attribution-ShareAlike 3.0 United States License.


Author:
Reginald Penner
Title:
Chancellor's Professor
Department:
Chemistry
Creative Commons License
Chem 131C (Spring 2012): Getting to Know the Gibbs Energy by Reginald Penner is licensed under a Creative Commons Attribution-ShareAlike Unported 3.0 License
Provide a Testimonial